Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 12: 570425, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732230

RESUMEN

Peroxisome proliferator-activated receptor (PPAR)-δ is a nuclear receptor that functions to maintain metabolic homeostasis, regulate cell growth, and limit the development of excessive inflammation during immune responses. Previously, we reported that PPAR-δ-deficient mice develop a more severe clinical course of experimental autoimmune encephalomyelitis (EAE); however, it was difficult to delineate the role that microglia played in this disease phenotype since PPAR-δ-deficient mice exhibited a number of immune defects that enhanced CNS inflammation upstream of microglia activation. Here, we specifically investigated the role of PPAR-δ in microglia during EAE by using mice where excision of a floxed Ppard allele was driven by expression of a tamoxifen (TAM)-inducible CX3C chemokine receptor 1 promoter-Cre recombinase transgene (Cx3cr1CreERT2: Ppardfl/fl). We observed that by 30 days of TAM treatment, Cx3cr1CreERT2: Ppardfl/fl mice exhibited Cre-mediated deletion primarily in microglia and this was accompanied by efficient knockdown of Ppard expression in these cells. Upon induction of EAE, TAM-treated Cx3cr1CreERT2: Ppardfl/fl mice presented with an exacerbated course of disease compared to TAM-treated Ppardfl/fl controls. Histopathological and magnetic resonance (MR) studies on the spinal cord and brains of EAE mice revealed increased Iba-1 immunoreactivity, axonal injury and CNS tissue loss in the TAM-treated Cx3cr1CreERT2: Ppardfl/fl group compared to controls. In early EAE, a time when clinical scores and the infiltration of CD45+ leukocytes was equivalent between Cx3cr1CreERT2: Ppardfl/fl and Ppardfl/fl mice, Ppard-deficient microglia exhibited a more reactive phenotype as evidenced by a shorter maximum process length and lower expression of genes associated with a homeostatic microglia gene signature. In addition, Ppard-deficient microglia exhibited increased expression of genes associated with reactive oxygen species generation, phagocytosis and lipid clearance, M2-activation, and promotion of inflammation. Our results therefore suggest that PPAR-δ has an important role in microglia in limiting bystander tissue damage during neuroinflammation.


Asunto(s)
Axones/metabolismo , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/metabolismo , Microglía/inmunología , Microglía/metabolismo , PPAR delta/deficiencia , Animales , Axones/patología , Células Cultivadas , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Encefalomielitis Autoinmune Experimental/diagnóstico , Activación de Linfocitos/inmunología , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Microglía/patología , Índice de Severidad de la Enfermedad , Linfocitos T/inmunología , Linfocitos T/metabolismo
2.
J Immunol ; 203(10): 2588-2601, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31578267

RESUMEN

Peroxisome proliferator-activated receptor (PPAR)-δ is a fatty acid-activated transcription factor that regulates metabolic homeostasis, cell growth, and differentiation. Previously, we reported that mice with a global deficiency of PPAR-δ develop an exacerbated course of experimental autoimmune encephalomyelitis (EAE), highlighting a role for this nuclear receptor in limiting the development of CNS inflammation. However, the cell-specific contribution of PPAR-δ to the more severe CNS inflammatory response remained unclear. In this study, we studied the specific involvement of PPAR-δ in myeloid cells during EAE using mice that had Cre-mediated excision of floxed Ppard driven by the lysozyme M (LysM) promoter (LysM Cre :Ppard fl/fl). We observed that LysM Cre :Ppard fl/fl mice were more susceptible to EAE and developed a more severe course of this disease compared with Ppard fl/fl controls. The more severe EAE in LysM Cre :Ppard fl/fl mice was associated with an increased accumulation of pathogenic CD4+ T cells in the CNS and enhanced myelin-specific Th1 and Th17 responses in the periphery. Adoptive transfer EAE studies linked this EAE phenotype in LysM Cre :Ppard fl/fl mice to heightened Th responses. Furthermore, studies using an in vitro CD11b+ cell:Th cell coculture system revealed that CD11b+CD11c+ dendritic cells (DC) from LysM Cre :Ppard fl/fl mice had a heightened capacity to prime myelin oligodendrocyte glycoprotein (MOG)-specific Th cells compared with Ppard fl/fl counterparts; the effects of DC on Th1 cytokine production were mediated through production of the IL-12p40 homodimer. These studies revealed a role for PPAR-δ in DC in limiting Th cell priming during EAE.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Células Mieloides/inmunología , Receptores Citoplasmáticos y Nucleares/metabolismo , Células TH1/inmunología , Células Th17/inmunología , Traslado Adoptivo , Animales , Antígeno CD11b/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Células Dendríticas/inmunología , Subunidad p40 de la Interleucina-12/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Glicoproteína Mielina-Oligodendrócito/metabolismo , Receptores Citoplasmáticos y Nucleares/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...